Source code for nodepy.low_storage_rk

r"""
Typically, implementation of a Runge-Kutta method requires `s \times N`
memory locations, where `s` is the number of stages of the method and
`N` is the number of unknowns.  Certain classes of Runge-Kutta methods
can be implemented using substantially less memory, by taking advantage
of special relations among the coefficients.  Three main classes have
been developed in the literature:

    * 2N (Williamson) methods
    * 2R (van der Houwen/Wray) methods
    * 2S methods

Each of these classes requires only `2\times N` memory locations.
Additional methods have been developed that use more than two
memory locations per unknown but still provide a substantial savings
over traditional methods.  These are referred to as, e.g., 3S, 3R, 4R,
and so forth.
For a review of low-storage methods, see :cite:`ketcheson2010` .

In NodePy, low-storage methods are a subclass of explicit Runge-Kutta
methods (and/or explicit Runge-Kutta pairs).  In addition to the usual
properties, they possess arrays of low-storage coefficients.  They
override the generic RK implementation of time-stepping and use
special memory-efficient implementations instead.  It should be noted
that, although these low-storage algorithms are implemented, due to
Python language restrictions an extra intermediate copy of the solution
array will be created.  Thus the implementation in NodePy is not really
minimum-storage.

At the moment, the following classes are implemented:

    * 2S : Methods using two registers (under Ketcheson's assumption)
    * 2S* : Methods using two registers, one of which retains the previous
            step solution
    * 3S* : Methods using three registers, one of which retains the previous
            step solution
    * 2S embedded pairs
    * 3S* embedded pairs
    * 2N methods pairs
    * 2R methods and embedded pairs
    * 3R methods and embedded pairs

**Examples**::

    >>> from nodepy import lsrk, ivp
    >>> myrk = lsrk.load_low_storage('DDAS47')
    >>> print(myrk)
    DDAS4()7[2R]
    2R Method of Tselios & Simos (2007)
     0.000 |
     0.336 | 0.336
     0.286 | 0.094  0.192
     0.745 | 0.094  0.150  0.501
     0.639 | 0.094  0.150  0.285  0.110
     0.724 | 0.094  0.150  0.285 -0.122  0.317
     0.911 | 0.094  0.150  0.285 -0.122  0.061  0.444
    _______|_________________________________________________
           | 0.094  0.150  0.285 -0.122  0.061  0.346  0.187

    >>> rk58 = lsrk.load_low_storage('RK58[3R]C').__num__()
    >>> rk58.name
    'RK5(4)8[3R+]C'
    >>> rk58.order()
    5
    >>> problem = ivp.load_ivp('vdp')
    >>> t,u = rk58(problem)
    >>> u[-1]
    array([-1.40278844,  1.23080499])
    >>> import nodepy
    >>> rk2S = lsrk.load_LSRK("{}/method_coefficients/58-2S_acc.txt".format(nodepy.__path__[0]),has_emb=True)
    >>> rk2S.order()
    5
    >>> rk2S.embedded_method.order()
    4
    >>> rk3S = lsrk.load_LSRK(nodepy.__path__[0]+'/method_coefficients/58-3Sstar_acc.txt',lstype='3S*')
    >>> rk3S.principal_error_norm() # doctest: +ELLIPSIS
    0.00035742076...
"""
from __future__ import absolute_import
from nodepy.runge_kutta_method import *
from six.moves import range

#=====================================================
[docs]class TwoNRungeKuttaMethod(ExplicitRungeKuttaMethod): #===================================================== r""" Class for 2N low-storage Runge-Kutta methods. These were developed by Williamson, and Carpenter & Kennedy. **References**: * :cite:`ketcheson2010` **Examples** >>> from nodepy import lsrk >>> erk = lsrk.load_low_storage("RK45[2N]") >>> print(erk) RK45[2N] 2N Method of Carpenter & Kennedy (1994) 0 | 0.150 | 0.150 0.370 |-0.009 0.379 0.622 | 0.401 -0.602 0.823 0.958 |-0.190 0.814 -0.365 0.699 _______|___________________________________ | 0.006 0.345 0.029 0.468 0.153 """ def __init__(self, coef_a, coef_b, name='2N Runge-Kutta Method',description='',shortname='LSRK2N',order=None): r""" Initializes the 2N method by storing the low-storage coefficients and computing the Butcher array. The coefficients should be specified as follows: * The low-storage coefficients are `coef_a` and `coef_b`. * The Butcher and Shu-Osher coefficients are computed from the low-storage coefficients. """ # compute alpha, beta m = len(coef_a) alpha = np.zeros([m+1, m]) beta = np.zeros([m+1, m]) for i in range(2, m+1): alpha[i, i-2] = - coef_b[i-1] * coef_a[i-1] / coef_b[i-2] alpha[i, i-1] = 1 - alpha[i, i-2] for i in range(1, m+1): beta[i, i-1] = coef_b[i-1] super(TwoNRungeKuttaMethod,self).__init__( alpha=alpha, beta=beta, name=name, shortname=shortname, description=description, order=order)
#===================================================== # End of class TwoNRungeKuttaMethod #=====================================================
[docs]def twoR2butcher(a, b, regs): m = len(b) A = np.zeros([m,m], dtype=np.promote_types(a.dtype, b.dtype)) for i in range(1,m): if regs == 2: A[i,i-1] = a[i-1] for j in np.arange(i-1): A[i,j] = b[j] elif regs == 3: A[i ,i-1] = a[0,i-1] for j in np.arange(i-2): A[i,j] = b[j] if i < m-1: A[i+1,i-1] = a[1,i-1] else: #NEED TO FILL IN raise ValueError("Schemes with %d registers are not implemented yet."%regs) c = np.sum(A, 1) return A, b, c
#=====================================================
[docs]class TwoRRungeKuttaMethod(ExplicitRungeKuttaMethod): #===================================================== """ Class for 2R/3R/4R low-storage Runge-Kutta pairs. These were developed by van der Houwen, Wray, and Kennedy et al. Only 2R and 3R methods have been implemented so far. **References**: * :cite:`kennedy2000` * :cite:`ketcheson2010` """ def __init__(self,a,b,bhat=None,regs=2, name='2R Runge-Kutta Method',description='',shortname='LSRK2R',order=None): r""" Initializes the 2R method by storing the low-storage coefficients and computing the Butcher array. The coefficients should be specified as follows: * For all methods, the weights `b` are used to fill in the appropriate entries in `A`. * For 2R methods, *a* is a vector of length `s-1` containing the first subdiagonal of `A` * For 3R methods, *a* is a `2\times s-1` array whose first row contains the first subdiagonal of `A` and whose second row contains the second subdiagonal of `A`. """ self.b=b self.a=a A, _, c = twoR2butcher(a, b, regs) self.A = A; self.c = c if bhat is not None: self.bhat=bhat self.embedded_method=ExplicitRungeKuttaMethod(self.A,self.bhat) self.name=name self.shortname=shortname self.info=description self.lstype=str(regs)+'R+_pair' if order is not None: self._p = order else: self._p = None s = self.A.shape[0] if self.A.dtype == object: alpha = snp.normalize(np.zeros((s+1,s),dtype=object)) beta = snp.normalize(np.zeros((s+1,s),dtype=object)) else: alpha = np.zeros((s+1,s)) beta = np.zeros((s+1,s)) beta[:-1,:] = self.A.copy() beta[-1,:] = self.b.copy() self.alpha=alpha self.beta=beta def __num__(self): """ Returns a copy of the method but with floating-point coefficients. This is useful whenever we need to operate numerically without worrying about the representation of the method. """ numself = super(TwoRRungeKuttaPair, self).__num__() if self.a.dtype == object: numself.a = np.array(self.a, dtype=np.float64) else: numself.a = self.a.copy() return numself
#===================================================== # End of class TwoRRungeKuttaMethod #===================================================== #=====================================================
[docs]class TwoRRungeKuttaPair(ExplicitRungeKuttaPair): #===================================================== """ Class for 2R/3R/4R low-storage Runge-Kutta pairs. These were developed by van der Houwen, Wray, and Kennedy et al. Only 2R and 3R methods have been implemented so far. **References**: * :cite:`kennedy2000` * :cite:`ketcheson2010` """ def __init__(self,a,b,bhat=None,regs=2, name='2R Runge-Kutta Method',description='',shortname='LSRK2R',order=(None,None)): r""" Initializes the 2R method by storing the low-storage coefficients and computing the Butcher array. The coefficients should be specified as follows: * For all methods, the weights `b` are used to fill in the appropriate entries in `A`. * For 2R methods, *a* is a vector of length `s-1` containing the first subdiagonal of `A` * For 3R methods, *a* is a `2\times s-1` array whose first row contains the first subdiagonal of `A` and whose second row contains the second subdiagonal of `A`. """ A, _, _ = twoR2butcher(a, b, regs) super(TwoRRungeKuttaPair,self).__init__( A=A, b=b, bhat=bhat, name=name, shortname=shortname, description=description, order=order) self.a = a self.lstype = str(regs)+'R+_pair' def __num__(self): """ Returns a copy of the method but with floating-point coefficients. This is useful whenever we need to operate numerically without worrying about the representation of the method. """ numself = super(TwoRRungeKuttaPair, self).__num__() if self.a.dtype == object: numself.a = np.array(self.a, dtype=np.float64) else: numself.a = self.a.copy() return numself def __step__(self,f,t,u,dt,errest=False,x=None,**kwargs): """ Take a time step on the ODE u'=f(t,u). The implementation here is special for 2R/3R low-storage methods But it's not really ultra-low-storage yet. **Input**: - f -- function being integrated - t -- array of previous solution times - u -- array of previous solution steps (u[i,:] is the solution at time t[i]) - dt -- length of time step to take **Output**: - unew -- approximate solution at time t[-1]+dt """ m=len(self); b=self.b; a=self.a S2=u[:] S1=u[:] S1=dt*f(t,S1) uhat = u[:] if self.lstype.startswith('2'): S2=S2+self.b[0]*S1 uhat = uhat + self.bhat[0]*S1 for i in range(1,m): S1 = S2 + (self.a[i-1]-self.b[i-1])*S1 S1=dt*f(t+self.c[i]*dt,S1) S2=S2+self.b[i]*S1 uhat = uhat + self.bhat[i]*S1 if errest: return S2, np.max(np.abs(S2-uhat)) else: return S2 elif self.lstype.startswith('3'): S3=S2+self.b[0]*S1 uhat = uhat + self.bhat[0]*S1 S1=S3+(self.a[0,0]-self.b[0])*S1 S2=(S1-S3)/(self.a[0,0]-self.b[0]) for i in range(1,m-1): S1=dt*f(t+self.c[i]*dt,S1) S3=S3+self.b[i]*S1 uhat = uhat + self.bhat[i]*S1 S1=S3 + (self.a[0,i]-b[i])*S1 + (self.a[1,i-1]-b[i-1])*S2 S2=(S1-S3+(self.b[i-1]-self.a[1,i-1])*S2)/(self.a[0,i]-self.b[i]) S1=dt*f(t+self.c[m-1]*dt,S1) S3=S3+self.b[m-1]*S1 uhat=uhat+self.bhat[m-1]*S1 if errest: return S3, np.max(np.abs(S3-uhat)) else: return S3 else: raise Exception('Error: only 2R and 3R methods implemented so far!')
#===================================================== # End of class TwoRRungeKuttaPair #===================================================== #=====================================================
[docs]class TwoSRungeKuttaMethod(ExplicitRungeKuttaMethod): #===================================================== r""" Class for low-storage Runge-Kutta methods that use Ketcheson's assumption (2S, 2S*, and 3S* methods). This class cannot be used for embedded pairs. Use the class TwoSRungeKuttaPair instead. The low-storage coefficient arrays `\beta,\gamma,\delta` follow the notation of :cite:`ketcheson2010`. The argument *lstype* must be one of the following values: * 2S * 2S* * 3S* """ def __init__(self,betavec,gamma,delta,lstype, name='Low-storage Runge-Kutta Method',description='',shortname='LSRK2S',order=None): r""" Initializes the low-storage method by storing the low-storage coefficients and computing the Butcher coefficients. """ self.betavec=betavec self.gamma=gamma self.delta=delta self.lstype=lstype self.shortname=shortname # Two-register methods if lstype=='2S' or lstype=='2S*': m=len(betavec)-1 alpha=np.zeros([m+1,m]) beta =np.zeros([m+1,m]) for i in range(0,m): beta[i+1,i] = betavec[i+1] for i in range(1,m): beta[ i+1,i-1] = -beta[i,i-1]*gamma[1][i+1]/gamma[1][i] alpha[i+1,i-1] = -gamma[0][i]*gamma[1][i+1]/gamma[1][i] alpha[i+1,i ] = 1. - alpha[i+1,i-1] # Three-register methods elif lstype.startswith('3S*'): m=len(betavec)-1 alpha=np.zeros([m+1,m]) beta =np.vstack([np.zeros(m),np.diag(betavec[1:])]) for i in range(1,m): beta[ i+1,i-1] = -beta[i,i-1]*gamma[1][i+1]/gamma[1][i] alpha[i+1, 0] = gamma[2][i+1]-gamma[2][i]* \ gamma[1][i+1]/gamma[1][i] alpha[i+1,i-1] = -gamma[0][i]*gamma[1][i+1]/gamma[1][i] alpha[i+1,i ] = 1. - alpha[i+1,i-1]-alpha[i+1,0] self.alpha, self.beta = alpha, beta self.A,self.b=shu_osher_to_butcher(alpha,beta) # Change type of A to float64 # This can be a problem if A is symbolic self.A=np.tril(self.A.astype(np.float64),-1) self.c=np.sum(self.A,1) self.name=name self.info=description if order is not None: self._p = order else: self._p = None def __step__(self,f,t,u,dt): """ Take a time step on the ODE u'=f(t,u). The implementation here is special for 2S/2S*/3S* low-storage methods, but it's not really ultra-low-storage yet. **Input**: - f -- function being integrated - t -- array of previous solution times - u -- array of previous solution steps (u[i,:] is the solution at time t[i]) - dt -- length of time step to take **Output**: - unew -- approximate solution at time t[-1]+dt """ m=len(self) S1=u[-1]+0. # by adding zero we get a copy; is there a better way? S2=np.zeros(np.size(S1)) if self.lstype.startswith('3S*'): S3=S1+0. for i in range(1,m+1): S2 = S2 + self.delta[i-1]*S1 if self.lstype=='2S' or self.lstype=='2S*': S1 = self.gamma[0][i]*S1 + self.gamma[1][i]*S2 \ + self.betavec[i]*dt*f(t[-1]+self.c[i-1]*dt,S1) elif self.lstype.startswith('3S*'): S1 = self.gamma[0][i]*S1 + self.gamma[1][i]*S2 \ + self.gamma[2][i]*S3 \ + self.betavec[i]*dt*f(t[-1]+self.c[i-1]*dt,S1) return S1
#===================================================== # End of class TwoSRungeKuttaMethod #===================================================== #=====================================================
[docs]class TwoSRungeKuttaPair(ExplicitRungeKuttaPair): #===================================================== r""" Class for low-storage embedded Runge-Kutta pairs that use Ketcheson's assumption (2S, 2S*, and 3S* methods). This class is only for embedded pairs. Use the class TwoSRungeKuttaMethod for single 2S/3S methods. The low-storage coefficient arrays `\beta,\gamma,\delta` follow the notation of :cite:`ketcheson2010` . The argument *lstype* must be one of the following values: * 2S * 2S* * 2S_pair * 3S* * 3S*_pair The 2S/2S*/3S* classes do not need an extra register for the error estimate, while the 2S_pair/3S_pair methods do. """ def __init__(self,betavec,gamma,delta,lstype,bhat=None, name='Low-storage Runge-Kutta Pair',description='',shortname='LSRK2S',order=None): """ Initializes the low-storage pair by storing the low-storage coefficients and computing the Butcher coefficients. """ self.name=name self.info=description self.betavec=betavec self.gamma=gamma self.delta=delta self.lstype=lstype self.shortname=shortname self.alphahat = None self._p_hat = None if lstype=='2S_pair': m=len(betavec)-1 alpha=np.zeros([m+1,m]) beta =np.zeros([m+1,m]) for i in range(0,m): beta[i+1,i] = betavec[i+1] for i in range(1,m): beta[ i+1,i-1] = -beta[i,i-1]*gamma[1][i+1]/gamma[1][i] alpha[i+1,i-1] = -gamma[0][i]*gamma[1][i+1]/gamma[1][i] alpha[i+1,i ] = 1. - alpha[i+1,i-1] self.A,self.b=shu_osher_to_butcher(alpha,beta) # Change type of A to float64 # This can be a problem if A is symbolic self.A=np.tril(self.A.astype(np.float64),-1) self.c=np.sum(self.A,1) self.bhat=np.dot(delta,np.vstack([self.A,self.b]))/sum(delta) elif lstype=='2S' or lstype=='2S*': m=len(betavec)-1 alpha=np.zeros([m+1,m]) beta =np.zeros([m+1,m]) for i in range(0,m): beta[i+1,i] = betavec[i+1] for i in range(1,m): beta[ i+1,i-1] = -beta[i,i-1]*gamma[1][i+1]/gamma[1][i] alpha[i+1,i-1] = -gamma[0][i]*gamma[1][i+1]/gamma[1][i] alpha[i+1,i ] = 1. - alpha[i+1,i-1] self.A,self.b=shu_osher_to_butcher(alpha,beta) # Change type of A to float64 # This can be a problem if A is symbolic self.A=np.tril(self.A.astype(np.float64),-1) self.c=np.sum(self.A,1) self.bhat=bhat elif lstype=='3S*_pair': m=len(betavec)-1 alpha=np.zeros([m+1,m]) beta =np.zeros([m+1,m]) for i in range(0,m): beta[i+1,i] = betavec[i+1] alpha[1,0]=gamma[0][1]+gamma[1][1]+gamma[2][1] for i in range(1,m): beta[ i+1,i-1]=-beta[i,i-1]*gamma[1][i+1]/gamma[1][i] alpha[i+1, 0]= gamma[2][i+1]-gamma[2][i]*gamma[1][i+1]/gamma[1][i] alpha[i+1,i-1]=-gamma[0][i]*gamma[1][i+1]/gamma[1][i] alpha[i+1,i ]=1.-alpha[i+1,i-1]-alpha[i+1,0] self.A,self.b=shu_osher_to_butcher(alpha,beta) # Change type of A to float64 # This can be a problem if A is symbolic self.A=np.tril(self.A.astype(np.float64),-1) self.c=np.sum(self.A,1) self.bhat=np.dot(delta[:m+1],np.vstack([self.A,self.b]))/sum(delta) elif lstype=='3S*': m=len(betavec)-1 alpha=np.zeros([m+1,m]) beta =np.vstack([np.zeros(m),np.diag(betavec[1:])]) for i in range(1,m): beta[ i+1,i-1] = -beta[i,i-1]*gamma[1][i+1]/gamma[1][i] alpha[i+1, 0] = gamma[2][i+1]-gamma[2][i]* \ gamma[1][i+1]/gamma[1][i] alpha[i+1,i-1] = -gamma[0][i]*gamma[1][i+1]/gamma[1][i] alpha[i+1,i ] = 1. - alpha[i+1,i-1]-alpha[i+1,0] self.A,self.b=shu_osher_to_butcher(alpha,beta) # Change type of A to float64 # This can be a problem if A is symbolic self.A=np.tril(self.A.astype(np.float64),-1) self.c=np.sum(self.A,1) self.bhat=bhat self.alpha, self.beta = alpha, beta if order is not None: self._p = order else: self._p = None self.alpha = None def __step__(self,f,t,u,dt,errest=False,x=None): """ Take a time step on the ODE u'=f(t,u). **Input**: - f -- function being integrated - t -- array of previous solution times - u -- array of previous solution steps (u[i,:] is the solution at time t[i]) - dt -- length of time step to take **Output**: - S1 -- approximate solution at time t[-1]+dt - S2 -- error estimate at time t[-1]+dt The implementation here is special for 2S low-storage embedded pairs. But it's not really fully low-storage yet. """ m=len(self) S1=u[-1]+0. # by adding zero we get a copy; is there a better way? S2=np.zeros(np.size(S1)) if self.lstype.startswith('3S*'): S3=S1+0.; S4=u[-1]+0. elif self.lstype=='2S': S3=u[-1]+0. for i in range(1,m+1): S2 = S2 + self.delta[i-1]*S1 if self.lstype=='2S_pair': S1 = self.gamma[0][i]*S1 + self.gamma[1][i]*S2 \ + self.betavec[i]*dt*f(t[-1]+self.c[i-1]*dt,S1) elif self.lstype=='2S': #Horribly inefficient hack: S3 = S3+self.bhat[i-1]*dt*f(t[-1]+self.c[i-1]*dt,S1) #End hack S1 = self.gamma[0][i]*S1 + self.gamma[1][i]*S2 \ + self.betavec[i]*dt*f(t[-1]+self.c[i-1]*dt,S1) elif self.lstype=='3S*': #Horribly inefficient hack: S4 = S4+self.bhat[i-1]*dt*f(t[-1]+self.c[i-1]*dt,S1) #End hack S1 = self.gamma[0][i]*S1 + self.gamma[1][i]*S2 \ + self.gamma[2][i]*S3 \ + self.betavec[i]*dt*f(t[-1]+self.c[i-1]*dt,S1) #Now put the embedded solution in S2 if self.lstype=='2S_pair': S2=1./sum(self.delta[1:m+1])*(S2+self.delta[m+1]*S1) elif self.lstype=='2S': S2=S3 elif self.lstype=='3S*': S2=S4 if errest: return S1, np.max(np.abs(S1-S2)) else: return S1
#===================================================== #End of TwoSRungeKuttaPair class #=====================================================
[docs]def load_LSRK(file,lstype='2S',has_emb=False): """ Load low storage methods of the types 2S/2S*/3S*/2S_pair/3S_pair from a file containing the low-storage coefficient arrays. If has_emb=True, the method has an embedded method that requires an extra register. The use of both _pair and has_emb seems redundant; this should be corrected in the future. """ from numpy import sum #Read in coefficients f=open(file,'r') coeff=[] for line in f: coeff.append(float(line)) f.close() if has_emb: f=open(file+'.bhat','r') bhat=[] for line in f: bhat.append(float(line)) bhat = np.array(bhat) # Determine number of stages if lstype=='2S' or lstype=='2S*': m=int(len(coeff)/3+1) elif lstype=='2S_pair': m=int((len(coeff)+1)/3) elif lstype=='3S*': m=int((len(coeff)+6.)/4.) elif lstype=='3S*_pair': m=int((len(coeff)+3.)/4.) # Fill in low-storage coefficient arrays beta=[0.] for i in range(m): beta.append(coeff[2*m-3+i]) gamma=[[0.],[0.,1.]+coeff[0:m-1]] if lstype.startswith('3S*'): gamma.append([0,0,0,0]+coeff[3*m-3:4*m-6]) if lstype=='2S' or lstype=='3S*': delta=[1.]+coeff[m-1:2*m-3]+[0.] elif lstype=='2S*': delta=[1.]+[0.]*len(list(range(m-1,2*m-3)))+[0.] elif lstype=='2S_pair': delta=[1.]+coeff[m-1:2*m-3] +[coeff[-2],coeff[-1]] elif lstype=='3S*_pair': delta=[1.]+coeff[m-1:2*m-3] +[coeff[-3],coeff[-2],coeff[-1]] if lstype=='2S' or lstype=='2S*': for i in range(1,m+1): gamma[0].append(1.-gamma[1][i]*sum(delta[0:i])) if has_emb: meth = TwoSRungeKuttaPair(beta,gamma,delta,lstype,bhat=bhat) else: meth = TwoSRungeKuttaMethod(beta,gamma,delta,lstype) elif lstype=='2S_pair': for i in range(1,m+1): gamma[0].append(1.-gamma[1][i]*sum(delta[0:i])) meth = TwoSRungeKuttaPair(beta,gamma,delta,lstype) elif lstype.startswith('3S*'): for i in range(1,m+1): gamma[0].append(1.-gamma[2][i] -gamma[1][i]*sum(delta[0:i])) if lstype=='3S*': if has_emb: meth = TwoSRungeKuttaPair(beta,gamma,delta,lstype,bhat=bhat) else: meth = TwoSRungeKuttaMethod(beta,gamma,delta,lstype) elif lstype=='3S*_pair': meth = TwoSRungeKuttaPair(beta,gamma,delta,lstype) ord=meth.order() if lstype=='2S_pair': emb_ord=meth.embedded_order() eostr=str(emb_ord) else: eostr='' m=len(meth) lstypename=lstype if lstypename=='2S_pair': lstypename='2S' meth.name='RK'+str(ord)+'('+eostr+')'+str(m)+'['+lstypename+']' return meth
[docs]def load_LSRK_RKOPT(file,lstype='2S',has_emb=False): """ Load low storage methods of the types 2S/2S*/3S*/2S_pair/3S_pair from a file containing the low-storage coefficient arrays. Such a file is usually written by RK-opt (see https://github.com/ketch/RK-opt). """ import re if has_emb: f=open(file+'.bhat','r') bhat=[] for line in f: bhat.append(float(line)) data = open(file).read() regex = re.compile(r"#stage.*order.*\n(?P<nb_stages>[0-9]+?)\s+(?P<order>[0-9]+?)\s+A",re.DOTALL) expr_match = re.match(regex, data).groupdict() nb_stages = int(expr_match['nb_stages']) beta = re.compile(r".*\nbeta\n(.*?)\n\n",re.DOTALL).match(data).group(1) beta = beta.split("\n") for k in range(nb_stages+1): beta[k] = [float(i) for i in beta[k].split()] beta_sub=[0.] for i in range(1,nb_stages+1): beta_sub.append(beta[i][i-1]) delta = re.compile(r".*\ndelta\n(.*?)\n\n",re.DOTALL).match(data).group(1) delta = [float(i) for i in delta.split()] gamma = [] if lstype.startswith('2S'): gamma1 = re.compile(r".*\ngamma1\n(.*?)\n\n",re.DOTALL).match(data).group(1) gamma.append([float(i) for i in gamma1.split()]) gamma2 = re.compile(r".*\ngamma2\n(.*?)\n\n",re.DOTALL).match(data).group(1) gamma.append([float(i) for i in gamma2.split()]) elif lstype.startswith('3S*'): gamma1 = re.compile(r".*\ngamma1\n(.*?)\n\n",re.DOTALL).match(data).group(1) gamma.append([float(i) for i in gamma1.split()]) gamma2 = re.compile(r".*\ngamma2\n(.*?)\n\n",re.DOTALL).match(data).group(1) gamma.append([float(i) for i in gamma2.split()]) gamma3 = re.compile(r".*\ngamma3\n(.*?)\n\n",re.DOTALL).match(data).group(1) gamma.append([float(i) for i in gamma3.split()]) if lstype=='2S' or lstype=='2S*' or lstype=='3S*': if has_emb: meth = TwoSRungeKuttaPair(beta_sub,gamma,delta,lstype,bhat=bhat) else: meth = TwoSRungeKuttaMethod(beta_sub,gamma,delta,lstype) elif lstype=='2S_pair' or lstype=='3S*_pair': meth = TwoSRungeKuttaPair(beta_sub,gamma,delta,lstype) ord = meth.order() if lstype=='2S_pair': emb_ord=meth.embedded_order() eostr = str(emb_ord) else: eostr='' m = len(meth) lstypename = lstype if lstypename=='2S_pair': lstypename='2S' meth.name = 'RK'+str(ord)+'('+eostr+')'+str(m)+'['+lstypename+']' return meth
[docs]def load_low_storage(which='All'): """ Loads low-storage methods from the literature. """ from sympy import Rational RK = {} one = Rational(1, 1) #================================================ fullname = 'RK45[2N]' shortname = 'RK45[2N]' description = '2N Method of Carpenter & Kennedy (1994)' coef_a = np.array([Rational( 0 , 1 ), Rational( -567301805773 , 1357537059087 ), Rational( -2404267990393 , 2016746695238 ), Rational( -3550918686646 , 2091501179385 ), Rational( -1275806237668 , 842570457699 )]) coef_b = np.array([Rational( 1432997174477 , 9575080441755 ), Rational( 5161836677717 , 13612068292357 ), Rational( 1720146321549 , 2090206949498 ), Rational( 3134564353537 , 4481467310338 ), Rational( 2277821191437 , 14882151754819 )]) RK[shortname] = TwoNRungeKuttaMethod(coef_a, coef_b, fullname, description=description, shortname=shortname) #================================================ fullname = 'DDAS4()7[2R]' shortname = 'DDAS47' description = '2R Method of Tselios & Simos (2007)' regs = 2 b = np.array([0.0941840925477795334, 0.149683694803496998, 0.285204742060440058, -0.122201846148053668, 0.0605151571191401122, 0.345986987898399296, 0.186627171718797670]) g = np.array([0.241566650129646868, 0.0423866513027719953, 0.215602732678803776, 0.232328007537583987, 0.256223412574146438, 0.0978694102142697230]) bhat = None a = b[:-1] + g RK[shortname] = TwoRRungeKuttaMethod(a, b, bhat, regs, fullname, description=description, shortname=shortname) #================================================ fullname = 'LDDC4()6[2R]' shortname = 'LDDC46' description = '2R Method of Calvo' regs = 2 b = np.array([0.10893125722541, 0.13201701492152, 0.38911623225517, -0.59203884581148, 0.47385028714844, 0.48812405426094]) g = np.array([0.17985400977138, 0.14081893152111, 0.08255631629428, 0.65804425034331, 0.31862993413251]) bhat = None a = b[:-1] + g RK[shortname] = TwoRRungeKuttaMethod(a, b, bhat, regs, fullname, description=description, shortname=shortname) #================================================ fullname = 'RK3(2)4[2R+]C' shortname = 'RK34[2R]C' description = 'A 2R Method of Kennedy, Carpenter, Lewis (2000)' regs = 2 a = np.array([11847461282814 * one / 36547543011857, 3943225443063 * one / 7078155732230, -346793006927 * one / 4029903576067]) b = np.array([1017324711453 * one / 9774461848756, 8237718856693 * one / 13685301971492, 57731312506979 * one / 19404895981398, -101169746363290 * one / 37734290219643]) bhat = np.array([15763415370699 * one / 46270243929542, 514528521746 * one / 5659431552419, 27030193851939 * one / 9429696342944, -69544964788955 * one / 30262026368149]) RK[shortname] = TwoRRungeKuttaPair(a, b, bhat, regs, fullname, description=description, shortname=shortname) #================================================ fullname = 'RK4(3)5[2R+]C' shortname = 'RK45[2R]C' description = 'A 2R Method of Kennedy, Carpenter, Lewis (2000)' regs = 2 a = np.array([970286171893 * one / 4311952581923, 6584761158862 * one / 12103376702013, 2251764453980 * one / 15575788980749, 26877169314380 * one / 34165994151039]) b = np.array([1153189308089 * one / 22510343858157, 1772645290293 * one / 4653164025191, -1672844663538 * one / 4480602732383, 2114624349019 * one / 3568978502595, 5198255086312 * one / 14908931495163]) bhat = np.array([1016888040809 * one / 7410784769900, 11231460423587 * one / 58533540763752, -1563879915014 * one / 6823010717585, 606302364029 * one / 971179775848, 1097981568119 * one / 3980877426909]) RK[shortname] = TwoRRungeKuttaPair(a, b, bhat, regs, fullname, description=description, shortname=shortname) #================================================ fullname = 'RK4(3)5[3R+]C' shortname = 'RK45[3R]C' description = 'A 3R Method of Kennedy, Carpenter, Lewis (2000)' regs = 3 a = np.array([[Rational( 2365592473904 , 8146167614645 ), Rational( 4278267785271 , 6823155464066 ), Rational( 2789585899612 , 8986505720531 ), Rational( 15310836689591 , 24358012670437 )], [Rational( -722262345248 , 10870640012513 ), Rational( 1365858020701 , 8494387045469 ), Rational( 3819021186 , 2763618202291 ), Rational( 0 , 1 )]]) b = np.array([Rational( 846876320697 , 6523801458457 ), Rational( 3032295699695 , 12397907741132 ), Rational( 612618101729 , 6534652265123 ), Rational( 1155491934595 , 2954287928812 ), Rational( 707644755468 , 5028292464395 )]) bhat = np.array([Rational( 1296459667021 , 9516889378644 ), Rational( 2599004989233 , 11990680747819 ), Rational( 1882083615375 , 8481715831096 ), Rational( 1577862909606 , 5567358792761 ), Rational( 328334985361 , 2316973589007 )]) RK[shortname] = TwoRRungeKuttaPair(a, b, bhat, regs, fullname, description=description, shortname=shortname) #================================================ fullname = 'RK5(4)8[3R+]C' shortname = 'RK58[3R]C' description = 'A 3R Method of Kennedy, Carpenter, Lewis (2000)' regs = 3 a = np.array([[141236061735 * one / 3636543850841, 7367658691349 * one / 25881828075080, 6185269491390 * one / 13597512850793, 2669739616339 * one / 18583622645114, 42158992267337 * one / 9664249073111, 970532350048 * one / 4459675494195, 1415616989537 * one / 7108576874996], #1st subdiagonal [ -343061178215 * one / 2523150225462, -4057757969325 * one / 18246604264081, 1415180642415 * one / 13311741862438, -93461894168145 * one / 25333855312294, 7285104933991 * one / 14106269434317, -4825949463597 * one / 16828400578907,0.]]) #2nd subdiagonal b = np.array([514862045033 * one / 4637360145389, 0., 0., 0., 2561084526938 * one / 7959061818733, 4857652849 * one / 7350455163355, 1059943012790 * one / 2822036905401, 2987336121747 * one / 15645656703944]) bhat = np.array([1269299456316 * one / 16631323494719, 0., 2153976949307 * one / 22364028786708, 2303038467735 * one / 18680122447354, 7354111305649 * one / 15643939971922, 768474111281 * one / 10081205039574, 3439095334143 * one / 10786306938509, -3808726110015 * one / 23644487528593]) RK[shortname] = TwoRRungeKuttaPair(a, b, bhat, regs, fullname, description=description, shortname=shortname) #================================================ fullname = 'RK5(4)9[2R+]S' shortname = 'RK59[2R]S' description = 'A 2R Method of Kennedy, Carpenter, Lewis (2000)' regs = 2 a = np.array([1107026461565 * one / 5417078080134, 38141181049399 * one / 41724347789894, 493273079041 * one / 11940823631197, 1851571280403 * one / 6147804934346, 11782306865191 * one / 62590030070788, 9452544825720 * one / 13648368537481, 4435885630781 * one / 26285702406235, 2357909744247 * one / 11371140753790]) b = np.array([2274579626619 * one / 23610510767302, 693987741272 * one / 12394497460941, -347131529483 * one / 15096185902911, 1144057200723 * one / 32081666971178, 1562491064753 * one / 11797114684756, 13113619727965 * one / 44346030145118, 393957816125 * one / 7825732611452, 720647959663 * one / 6565743875477, 3559252274877 * one / 14424734981077]) bhat = np.array([266888888871 * one / 3040372307578, 34125631160 * one / 2973680843661, -653811289250 * one / 9267220972999, 323544662297 * one / 2461529853637, 1105885670474 * one / 4964345317203, 1408484642121 * one / 8758221613943, 1454774750537 * one / 11112645198328, 772137014323 * one / 4386814405182, 277420604269 * one / 1857595682219]) RK[shortname] = TwoRRungeKuttaPair(a, b, bhat, regs, fullname, description=description, shortname=shortname) #================================================ fullname = 'RK35[3S*]' shortname = 'RK35[3S*]' description = 'A 3S* Method of Parsani, Ketcheson, Deconinck (2013)' lstype = "3S*" gamma1 = np.array([0.000000000000000000000000000000000000e+00, 0.000000000000000000000000000000000000e+00, 2.587669070352078826147135259816423059e-01, -1.324366873994503035483205621858360246e-01, 5.055601231460399302974906277086120099e-02, 5.670552807902877745505065831821411848e-01]) gamma2 = np.array([0.000000000000000000000000000000000000e+00, 1.000000000000000000000000000000000000e+00, 5.528418745102160469784280394378583878e-01, 6.731844400389673799267598042206373066e-01, 2.803103804507635077314375848800409585e-01, 5.521508873507393611035354297200683504e-01]) gamma3 = np.array([0.000000000000000000000000000000000000e+00, 0.000000000000000000000000000000000000e+00, 0.000000000000000000000000000000000000e+00, 0.000000000000000000000000000000000000e+00, 2.752585813446636886503426921990467235e-01, -8.950548709279785297709963742818217725e-01]) beta = np.array([0.000000000000000000000000000000000000e+00, 2.300285062878154318521950472131720744e-01, 3.021457892454169624762982948595890775e-01, 8.025601039472703979171797072922345251e-01, 4.362158997637629598287389853794593364e-01, 1.129268494470295342013699269045901019e-01]) delta = np.array([1.000000000000000000000000000000000000e+00, 3.407687209321454968602438384550623596e-01, 3.414399280584625162582312896120129153e-01, 7.229302732875589887484579776355531067e-01, 0.000000000000000000000000000000000000e+00]) RK[shortname] = TwoSRungeKuttaMethod(beta, [gamma1, gamma2, gamma3], delta, lstype, fullname, description=description, shortname=shortname) #================================================ fullname = 'RK49[3S*]' shortname = 'RK49[3S*]' description = 'A 3S* Method of Parsani, Ketcheson, Deconinck (2013)' lstype = "3S*" gamma1 = np.array([0.000000000000000000000000000000000000e+00, 0.000000000000000000000000000000000000e+00, -4.655641301259180409033433534204959869e+00, -7.720264924836064412971836645738221705e-01, -4.024423213419724199013671750435605645e+00, -2.129685246739018711359392455051420256e-02, -2.435022519234470106397338895476423204e+00, 1.985627480986167786580764982318214606e-02, -2.810790112885284131039043131750077009e-01, 1.689434895835535688224382511180010624e-01]) gamma2 = np.array([0.000000000000000000000000000000000000e+00, 1.000000000000000000000000000000000000e+00, 2.499262752607826154616077474202029407e+00, 5.866820365436137274528505258786026388e-01, 1.205141365412670806378514498646836728e+00, 3.474793796700869075166906441154424101e-01, 1.321346140128723201101479389762971550e+00, 3.119636324379370662107646694494178519e-01, 4.351419055894087395408575957844732329e-01, 2.359698299440788349379261035210220143e-01]) gamma3 = np.array([0.000000000000000000000000000000000000e+00, 0.000000000000000000000000000000000000e+00, 0.000000000000000000000000000000000000e+00, 0.000000000000000000000000000000000000e+00, 7.621037111138170283552994987985584885e-01, -1.981182159087218341841918345380690880e-01, -6.228960706317566708989375001692678779e-01, -3.752246993432626354092462861444801092e-01, -3.355436539000946627453458859235979617e-01, -4.560963110717484308986868768442946021e-02]) beta = np.array([0.000000000000000000000000000000000000e+00, 2.836343531977826293299926874169614166e-01, 9.736497978646965201221519237151369452e-01, 3.382358566377620112675117525213863701e-01, -3.584937820217850568127460064715705812e-01, -4.113955814725134448039955969989023288e-03, 1.427968962196018987143020240182522684e+00, 1.808467712038742958302606211873353459e-02, 1.605771316794520897630604849837254733e-01, 2.952226811394310090896908604918280616e-01]) delta = np.array([1.000000000000000000000000000000000000e+00, 1.262923854387806521515358326723799109e+00, 7.574967177560872899633181987155694515e-01, 5.163591158111222600979317576275207102e-01, -2.746333792042827265378335255263664294e-02, -4.382674653941771025777995873795589432e-01, 1.273587103668392783717422389599960297e+00, -6.294740045442794862395885502337478101e-01, 0.000000000000000000000000000000000000e+00]) RK[shortname] = TwoSRungeKuttaMethod(beta, [gamma1, gamma2, gamma3], delta, lstype, fullname, description=description, shortname=shortname) #================================================ fullname = 'RK510[3S*]' shortname = 'RK510[3S*]' description = 'A 3S* Method of Parsani, Ketcheson, Deconinck (2013)' lstype = "3S*" gamma1 = np.array([0.000000000000000000000000000000000000e+00, 0.000000000000000000000000000000000000e+00, 4.043660078504696109291671746177598834e-01, -8.503427464263184631931835610885173082e-01, -6.950894167072419804753735661506652832e+00, 9.238765225328278152261418654234148562e-01, -2.563178039957404230619886220665648580e+00, 2.545744869966347634360204210679512471e-01, 3.125831733863169148435190436430275440e-01, -7.007114800567585399804215740005020052e-01, 4.839620970980726410992645014630397782e-01]) gamma2 = np.array([0.000000000000000000000000000000000000e+00, 1.000000000000000000000000000000000000e+00, 6.871467069752346112920804444001987576e-01, 1.093024760468898737286735922680236399e+00, 3.225975382330161345123542560031637549e+00, 1.041153700841396467779986778623424470e+00, 1.292821488864702716981014418706763536e+00, 7.391462769297005852564552697003819048e-01, 1.239129257039300047171792584776994772e-01, 1.842753479366766866665017232662648894e-01, 5.712788942697077931853755217161960900e-02]) gamma3 = np.array([0.000000000000000000000000000000000000e+00, 0.000000000000000000000000000000000000e+00, 0.000000000000000000000000000000000000e+00, 0.000000000000000000000000000000000000e+00, -2.393405159342139487677059150882996619e+00, -1.902854422095986652863075505592860281e+00, -2.820042210583207253904447497916407883e+00, -1.832698464130565030316688535094726831e+00, -2.199094510750697895051786190379061736e-01, -4.082430660384876452972946481168037280e-01, -1.377669791121207965023387487235595472e-01]) beta = np.array([0.000000000000000000000000000000000000e+00, 2.597883575710995818219828379369573668e-01, 1.777008800169541796742933570385503117e-02, 2.481636637328140659874975426646415144e-01, 7.941736827560429423655818936822470278e-01, 3.885391296871822386371775337465805933e-01, 1.455051664264339350562948993683676235e-01, 1.587517379462528854805469791244831868e-01, 1.650605631567659548064597174743539654e-01, 2.118093299943235030546873076673364267e-01, 1.559392340339606219945522980196983553e-01]) delta = np.array([1.000000000000000000000000000000000000e+00, -1.331778409133849705447971700777998194e-01, 8.260422785246029908634568528214003891e-01, 1.513700430513332362281175846874248236e+00, -1.305810063177048174765104704420082271e+00, 3.036678789342507567283746539033018053e+00, -1.449458267074592576761915552197024226e+00, 3.834313873320957632984118390595540404e+00, 4.122293971923324917838726832997053862e+00, 0.000000000000000000000000000000000000e+00]) RK[shortname] = TwoSRungeKuttaMethod(beta, [gamma1, gamma2, gamma3], delta, lstype, fullname, description=description, shortname=shortname) if which=='All': return RK else: return RK[which]
if __name__ == "__main__": import doctest doctest.testmod()